
Spring 2015 PeWe Workshop, April 11, 2015, pp. 125–126.

Modeling Programmer’s Expertise

Based on Software Metrics

Pavol ZBELL*

Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava, Slovakia

pavol.zbell@gmail.com

Knowledge of programmers expertise in a software house environment is usually

utilized to effective task resolving (by identifying experts suitable for specific tasks),

better forming of teams, effective communication between programmers, personalized

recommendation or search in source code, and thus indirectly improves overall

software quality. The process of modeling programmer’s expertise (building the

knowledge base) usually expects on its input some information about programmer’s

activities during software development such as interactions with source code (typically

fine grained actions performed in an IDE – integrated development environment),

interactions with issue tracking systems and revision control systems, activities on the

Web or any other interaction with external documents.

In our research, we focus on modeling programmer’s expertise using software

metrics such as source code complexity and authorship. We assume that programmer’s

expertise is related to complexity of the source code she is interacting with as well as to

a degree of authorship of that code. By considering both metrics we intend to find

answers for these questions:

 What is the programmer’s familiarity of a software component? Is it affected

more by programmer’s degree of authorship or her readonly interactions (like

trying to understand desired code, hence complexity) with it?

 Who works on common library APIs and who just uses them, i.e. are we able to

distinguish software architects from business logic programmers?

There are several approaches to model programmer’s expertise of which most are

based on a simple heuristic – Line 10 Rule [1]. On the other hand, more sophisticated

models exist such as Expertise profile [1]. Expertise profile is designed to distinguish

between programmers who create methods and who call them, it is a composition of

Implementation expertise (i.e. programmer’s authorship degree) and Usage expertise

(i.e. programmer knows which method to call and how to call it). Degree of knowledge

*
 Supervisor: Eduard Kuric, Institute of Informatics and Software Engineering

126 User Experience and Implicit Feedback (PeWe.UX)

model [2] is a similar solution which takes degree of authorship and degree of interest

into account. The degree of authorship is a combination of “first authorships” (first

emergence of code by original author), deliveries (changes to the code by the original

author) and acceptances (changes by others) and represents long term knowledge of the

component. The degree of interest reflects component selections and edits, and

represents short term knowledge. In case of source code complexity we have not fully

explored the possibilities of its utilization and measurement. We believe that

approaches based just on LOC (lines of code) metric or its variations can be further

improved, e.g. by static analysis of the source code. Our idea is to explore alternative

approaches like weighting AST (abstract syntax tree) nodes or call graph based

metrics.

In comparison to the existing approaches we intend to focus more on modeling

programmer’s knowledge from her interactions in an IDE. An extended analysis [3]

shows us that programmers interact with source code in many different ways and hence

we may improve our expertise model by taking interaction types or patterns into

account (e.g., who uses advanced refactoring tools on some code probably has

significant knowledge of it). However, the foundation of our expertise model will be a

combination of source code complexity and authorship degree primarily derived from

programmer’s interactions in the IDE.

We are continually implementing our solution as an extension to Eclipse IDE

since the Eclipse platform is easily extensible and has rich possibilities for user

interaction tracking. We plan to evaluate our research on data from academic

environment or (preferably) real software house environment.

Acknowledgement. This contribution is the partial result of the Research &

Development Operational Programme for the project Research of methods for

acquisition, analysis and personalized conveying of information and knowledge, ITMS

26240220039, co-funded by the ERDF.

References

[1] Schuler, D., Zimmermann, T.: Mining usage expertise from version archives. In

Proceedings of the 2008 international workshop on Mining software repositories.

2008. pp. 121.

[2] Fritz, T., Ou J., Murphy, G., C., Murphy-Hill, E.: A degree-of-knowledge model

to capture source code familiarity. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 1. 2010. pp. 385-

394.

[3] Murphy, G. C., Kersten, M., Findlater, L.: How Are Java Software Developers

Using the Eclipse IDE? In IEEE Software. 2006. Vol. 23, no. 4, pp. 76-83.

